Trimethylamine N-oxide (TMAO) reductases from Escherichia coli K-12
نویسندگان
چکیده
منابع مشابه
Is There any Possible Association Between Trimethylamine N-Oxide (TMAO) and Cancer? A Review Study
Background: During the transit of digested animal source foods, gut microbiota synthesize metabolites that can affect the body cells. One of these metabolites, i.e. Trimethylamine (TMA) that is an intermediary metabolite, ultimately leads to the production of Trimethylamine N-oxide (TMAO). Several studies have been conducted to show the association between TMAO and different diseases. This arti...
متن کاملMechanism of Prominent Trimethylamine Oxide (TMAO) Accumulation in Hemodialysis Patients
Large size, protein binding and intracellular sequestration are well known to limit dialytic removal of compounds. In studying the normal renal and dialytic handling of trimethylamine oxide (TMAO), a molecule associated with cardiovascular disease in the general population, we discovered two largely unrecognized additional limitations to sustained reduction of a solute by chronic hemodialysis. ...
متن کاملMicroscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO).
Although it is widely known that trimethylamine N-oxide (TMAO), an osmolyte used by nature, stabilizes the folded state of proteins, the underlying mechanism of action is not entirely understood. To gain further insight into this important biological phenomenon, we use the C≡N stretching vibration of an unnatural amino acid, p-cyano-phenylalanine, to directly probe how TMAO affects the hydratio...
متن کاملAdaptation of anaerobic cultures of E scherichia coli K‐12 in response to environmental trimethylamine‐N‐oxide
Systematic analyses of transcriptional and metabolic changes occurring when Escherichia coli K-12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine-N-oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase;...
متن کاملProtonation of trimethylamine N-oxide (TMAO) is required for stabilization of RNA tertiary structure.
The osmolyte trimethylamine N-oxide (TMAO) stabilizes the tertiary but not the secondary structures of RNA. However, molecular dynamics simulations performed on the PreQ1 riboswitch showed that TMAO destabilizes the tertiary riboswitch structure, leading us to hypothesize that the presence of RNA could result in enhanced population of the protonated form, TMAOP. Constant pH replica exchange sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: FEMS Microbiology Letters
سال: 1985
ISSN: 0378-1097
DOI: 10.1016/0378-1097(85)90249-6